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S U M M A R Y  
A computing method is discussed for the problem of bending and buckling of nonlinear elastic bars. Arbitrary stress- 
strain relations are allowed. Analogue simulation proved to be adequate. Combining of the computing circuits for 
the basic parts of the computation is realized by nesting in different time-scales. 

1. Introduction 

The usual practice in the theory of calculating the bending and buckling of loaded bars is to 
assume the relation between stress (a) and strain (~) to be linear according to Hookers law 
a = Ee, where E is the material's modulus of elasticity. 

The assumption of linearity is essential. It yields an explicit algebraic relation between the 
bending moment in a certain cross-section and the curvature of the bar at that place making it 
possible to find an analytical solution for the problems of both bending and buckling. In case 
of nonlinear elasticity two integral relations appear for the bending moment M and the com- 
pressive force N respectively, each relation having as implicit unknowns the curvature of the 
bar and the stress of the axis of the bar. An iterative method is used to find the unknowns out 
of these integral relations. 

To solve the whole problem of bending and buckling of a nonlinear elastic bar analogue 
simulation proved to be adequate. The described procedure is useful for arbitrary (but elastic) 
stress-strain relations. 

Mathematical Formulation 

Consider an infinitesimal element dx (see Figure 1) of a pinned bar. Forces (N, D, Q) and 
moments (M) act as indicated. Besides there are continuously distributed loads with intensities 
n (horizontal) and q (vertical), and also an elastic lateral load -cw(x), where w (x) is the lateral 
deflection. Furthermore a local moment (M1) and a local force (Q2), acting on the bar at arbi- 
trary Xl and x2 respectively, are indicated. 

Under static load conditions equilibrium should exist for the horizontal forces, the vertical 
forces and the moments. Over the infinitesimal element dx these conditions yield three differen- 
tial equations, respectively 
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Figure 1. Loading of a pinned bar and equilibrium with respect to x. 
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The force Q2 and the moment M1 are introduced in these equations by means of a &function 
(defined by 6(x) - 0 for x ~ 0 and + ~ ~_ ~ 6(x)dx = 1). It will be allowed that the deflection and/or 
the angular rotation of the bar is prescribed for certain values of x. Such conditions complicate 
the problem because they result into implicitly given values of the reaction forces Q and the 
reaction moments M for these values ofx. 

For small angles of rotation 0 = dw/dx there is a simple relation between the curvature 
i /R(x) and the second derivative of the deflection w(x)" 

dZw 1 
dx ~-55 = - R(x-~" (4) 

To find a unique solution of the differential equations (1), (2), (3), (4) five boundary values are 
needed. Mostly they are specified at both ends of the bar, for instance for a pinned bar the 
boundary values are w(0), N(0), M(0), w(1) and M(1). So the considered problem belongs to the 
class of two-point boundary-value problems. 
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Figure 2. Equilibrium in a cross-section and ditto with respect to x dependent on each other via the curvature. 

To be able to solve the set of differential equations (1), (2), (3) and (4) finally it is necessary to 
describe the relation between the curvature 1/R and N, D and M for each x. A consideration 
of stresses and strains in a cross-section yields (see Figure 2) (the influence of shearing is 
neglected): 

N = -- b(z)a dz (5) 
d--~h 

M = b(z)z  d z .  (6) 
J-�89 

Figure 2 shows also that the relative stress ~(z) equals ( z -  u)/R, where u is the deflection of the 
neutral layer. 
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From the general formulas (5) and (6) the simple algebraic relations for a rectangular cross- 
section and a linear stress-strain relation are derived easily: 

U 
N = b h E - R ,  (7) 

EI 
M R ' (8) 

where EI is the fiexural rigidity of the bar. It appears that the curvature 1/R is only dependent 
on the moment M, while the relative stress of the bar's axis u/R (see figure 2) is only dependent 
on the compressive force N. For more details about theoretical aspects of the considered 
problem we refer to handbooks, e.g. [1]. 

The block diagram of figure 3a shows very schematically the way of solving the differential 
equations (1), (2), (3), (4) and the integral relations (5) and (6). For simplicity only one local 
moment M1, one local force Q2, one prescribed rotation 03 and one prescribed deflection w4 are 
indicated. Special attention will be paid to the block representing the iteration process to solve 
relations (5) and (6) and to the block which determines the implicitly given reaction forces and 
moments. Only a brief explanation will be given of the level-control blocks for solving the two- 
point boundary-value aspect of the problem. 

2. The Iteration-Process over a Cross-Section 

In the general case of a nonlinear stress-strain relation a method should be found to solve the 
unknown curvature 1/R out of the relations (5) and (6) for any given pair of N and M. An 
iteration-process is the obvious means for this purpose. The linear formulas (7) and (8) give 
an indication in which way a suitable iteration-process can be designed. We will show below 
that the convergence of this iteration-process is equivalent with the stability of the equilibrium 
(5), (6) of the loading in a cross-section. (In [2] it was already proved that (da/&) >0 is a 
sufficient condition for convergence). 

Denoting the approximation of u/R and 1/R obtained in the n-th iteration cycle by {u/R}, 
and {l/R}., then substitution of {u/R}, and {l/R}, in (5) and (6) yields values N, and M, accord- 
ing to 

N. b(z)a 1 u = - z -  dz (9) 
~ - ~ h  n n 

M. 1 z u 

which will generally differ from the prescribed N and M. These differences N -  N, and M - M, 
are used now to find the next approximation {u/R},+1 and {1/R}n+I by using the iteration 
formulas" 

= + N. )  
n + l  n 

= + KM (M - M.), 
n + l  n 

(11) 

(12) 

where KN and KM are two positive constants. 
= (el,~ To prove the convergence of the iteration-process, we introduce the error vector 8, ~ e2,]' 

where 
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Figure 3. Block-diagram of the computation, analogue computing scheme and timing scheme for a pinned bar. 
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el, = (13) 
n R '  

{,} , . 4 ,  

For small lie./the iteration formulas (11) and (12) can approximately be written as 

ON - K  0N \ 
I a-KN O(u/R) ~ O(1/R)],, (15) 

~ " + 1 = \ - K M  0M 1 K 0M / 

For a stable equilibrium of a physical element of the bar it is necessary that 
i) for constant 1/R an extra force dN should do positive work, i.e. the corresponding 

relative displacement d(u/R) should have the same direction as dN, 
ii) for constant u/R an extra moment dM should do positive work, i.e. the corresponding 

angular rotation d(1/R) should have the same direction as riM, 
iii) for constant M an extra force dN should do positive work. 

Considering N = N(u/R, 1/R) and M = M(u/R, 1/R) from these conditions it follows 

ON OM OM ON ON OM i \  ) - - -  > O. (16) - - > 0 ,  > 0 ,  ~ l c ~  u --]- ~ 1 u 
0 ~  0 k ~ 0 ~  R 

Convergence of the iteration-process is guaranteed if the eigenvalues of the transformation- 
matrix T in (15) satisfy ]21,2[ < 1. 

The eigenvalues 21, 2 are roots of the equation 

P(,~) = 22-A - KN ---~ -- KM ITI = 0 (17) 
0~ 0 

where I TI means the determinant of matrix T. The condition 12t,2[ < i is only satisfied if 

ON 0M 
]TI ~- 1-KN ~ u  KM ~i -  < 1 (18) 

o -  
R R 

K K / ~ N  ~M 
P(1)= ~ M[ -  u 8 1 

\o~ e 

oN OM_ > 
1 0 ,  (19) 

ON OM 
P ( -  1) --- 4 - 2 K  u - -  - 2KM ~ > 0, (20) 

u 
6-- 0 - -  

R R 

where the approximations in (18) and (20) relate to terms with products of the small K's. Con- 
sidering the unequalities (16) obviously conditions (18) and (19) are satisfied and (20) can always 
be satisfied by choosing KN and KM small enough. 

The conclusion is that for sufficiently small values of Ku and KM the iteration process is 
convergent as long as the physical conditions (16) are satisfied. Apparently the convergence of 
the iteration-process is equivalent with the stability of the physical system. 

To get an idea about practical values of KN and KM consider again the linear case (7), (8). 
Optimal values of K u and KM can be calculated now: 

Journal of Engineerin O Math., Vol. 4 (1970) 129-139 



134 L. Dekker, A. K. Jansen 

1 1 
KN = bhE'  KM = ~ ,  (21) 

for which the first iteration cycle yields the correct values of u/R and 1/R independent of the 
initial guesses. 

3. The Level-Control Method 

Since the boundary conditions for the equations (1), (2), (3), (4) are normally specified at both 
ends of the bar the computing problem belongs to the class of two-point boundary-value 
problems. The level-control method is applied to realize that the boundary values are satisfied. 
Referring to [3] for a comprehensive description of the level-control method, here only the 
basic principles of the method are presented : 

i) The two-point boundary-value problem is transformed into an unconditionally stable 
initial value problem by integrating periodically over equal time-intervals forward, i.e. 
from beginning to end, and backward, i.e. from end to beginning of the bar. For this 
initial-value problem the remaining boundary conditions are interpreted as level-value 
conditions; 

ii) Level-controls are introduced in order to realize that these level-value conditions are 
satisfied in the final stationary state ; 

iii) To obtain asymptotic stability after each period the state of the system is updated where 
as estimates for the unknown initial values weighted interpolations are taken between 
the previous estimates and the values at the end of the period. 

The method is an iterative one, having a large convergence region though the convergence 
itself is slow. The method is very suitable for the study of buckling because it remains con- 
vergent while passing the buckling condition. 

4. Dynamic Positioning of a Simulated Bar 

The previous paragraphs dealt with load conditions including local moments and forces. 
However, locally prescribed angles of rotation and deflections were not included. These result 
into unknown, implicit reaction moments and reaction forces respectively. 

A method was applied to realize this positioning by changing the original time-independent 
problem into a dynamic one such that the positioning in the final state is the correct one. 

Say for simplicity only the displacement in two points is prescribed; the angular rotation in 
one point, the deflection in the other one. Denoting the difference between the present and the 
prescribed displacement vector as v, an unknown loading L--a moment and a force respecti- 
vely-should be applied to reach that v = 0. 

Choosing L time-dependent according to 

dL 
z d-7= - v '  t > 0  (22) 

and assuming a stable equilibrium of the bar at each time, it cari easily be proved that the 
prescription (22) leads to v = 0. The stable equilibrium demands with respect to dL" dL positive 
and finite work done by dL, i.e. 

d L  dv 
> k > 0 .  (23) 

dL" dL = 

Substituting (22) into (23) gives 

dv k 
v d t  < - - v ' v  (24) 

or  
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d(r-v) _ 2r" dr <_ 2k (r.v) 
dt dt - z 

Apparently (v. v) diminishes not slower than in case of equality in (25). Hence 

O<(v 'v )< ( r ' v ) t=oexp(  - 2 k  ) - - ~  t 

i.e. the set of differential equations (22) is stable and 

135 

(25) 

(26) 

L,=~ = Lv: 0 . (27) 

5. Analogue Simulation 

Figures 3b,c show how the analogue simulation has been realized. 
For the iteration-process over a cross-section during each iteration-cycle first the integration 

with respect to z is performed by means of the z-integrators. Then with the results of this inte- 
gration the last estimates (u/R}, and {l/R}, are improved using the error-integrators, which 
integrate the differences N - N ,  resp. M - M ,  during a short time-interval Tc, resulting into similar 
equations as (11) and (12): 

= + T~ (M-M,). (29) 
n +  1 n ~M 

The iteration-process over one cross-section has to be stopped after a finite number of itera- 
tions. Moreover only for a finite number (S) of cross-sections 1/R can be determined or in other 
words x has to be discretized as to the determination of 1/R. Because succeeding cross-sections 
are very close together and therefore the corresponding solutions 1/R differ only slightly, in 
practice only one iteration per cross-section is made. 

The integration with respect to x could be started as integration to time by the x-integrators 
as soon as the iteration-process over a cross-section has been finished until the next cross- 
section is reached. However assuming that this iteration-process is finished quasi-instantane- 
ously, it is also possible to perform both integrations, to z as well to x, in parallel with respect to 
time, provided x (t) is quasi-constant in comparison with z(t). 

In the implementation of the level-control iteration process for convenience sake the four 
time-intervals for forward and backward x-integration, for interpolating the new state and for 
updating the state are all taken of equal length. The interpolator consists of an integrator being 
in Compute-mode during the interpolating action. The level-control itself is realized by a 
level-integrator being in Compute-mode during the forward and backward x-integration. 
During the interpolation and the updating time-intervals the cross-section iteration-process is 
performed all the time over the cross-section for x = 0. The level-control iteration-process con- 
tinues during the whole computation. 

The dynamic positioning of the simulated bar can be realized by continuous integration with 
respect to time of the differential equations 

dM3 dw(x3) dQ4 
dt -- 03 dx ' dt - w4-w(x4)  (30) 

by means of integrators--which we will call positioners--provided that the data in the right-hand 
members are available quasi-continuously. These input-data of the positioners are renewed as 
soon as during the occurring level-control iteration-cycle the samples dw(x3)dx and w(x4) 
become available at the outputs of the corresponding track-stores. It means that the x-integra- 
tion has to be performed quasi-instantaneously in comparison with the dynamic positioning. 

Above as a degree of freedom in the design of the computation nesting of computing pro- 
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cesses in different time-scales has been applied. This is technically possible for modern analogue 
and hybrid computers. This way of nesting of subroutines is very attractive. It allows the 
designer of the total computational scheme to focus first his attention to the specific parts of the 
computation and after that he can combine the resulting computing processes by superposition 
in different time-scales. It is not to be expected that this superposition will cause troubles 
because there is no strong dynamic interference between the different computing processes. 

For instance if it was not allowed to design the dynamic positioning of the bar slowly com- 
pared to the level-control iteration-process, then it would be much more difficult to combine 
both computing processes. The designer would have to fight against the bad chance that both 
the stability of the dynamic positioning and the convergence of the level-control iteration- 
process are blown up because of the occurring dynamic interference. 

6. Accuracy 

Theoretically the final solution of a problem calculated according to the block-diagram of 
figure 3 is symmetric with respect to x = l in each level-control iteration-cycle. This fact opens 
the possibility to get an idea by visual inspection of the quantitative effect of those sources of 
error which cause an asymmetry in the solution with respect to x = I. 

Such a source of error is the time-delay which occurs in the determination of 1/R in forward 
as well as in backward x-integration as can easily be understood from the timing-scheme in 
figure 3c. This time-delay will increase by diminishing S, the number of cross-sections for which 
1/R is determined. 

Another source of error resulting into an asymmetry is the level-control. The level-integra- 
tion will not only influence the level but also, however (mostly) slightly, the solution itself. This 
error will increase by diminishing the time-constants of the level-integrators. We remark that 
the influence on the solution will grow when the parameters of the bar come closer to a situa- 
tion of buckling (the level-control iteration-process however remains convergent). 

An error giving also an asymmetry is the small amount of damping if this is introduced in 
the x-integrators in order to improve the convergence of the level-control iteration-process; 
see ['3]. In our experiments there was no reason to introduce such damping. 

It will be clear that the total accuracy of the computation will depend on the characteristics 
of the available computing equipment but also on the parameters of the considered bar and on 
the computing parameters (for instance the value of S). A check showed that for the computing 
facilities used in this study (a home-built modern but low accurate analogue computer, 0.5 % 
computing components) the computing accuracy was better than the accuracy of the oscillo- 
scope display (~_ 2 %) used as output-device. 

7. Some Results 

Figures 4,..., 8 show some results in the form of oscilloscope pictures for a few examples. 
Figure 4 represents the result of two successive integrations into the z-direction for a bar 

having a cross-section and a loading as indicated. 
Figure 5 shows the deflection curves of a bar in two cases : a linear and a two-sided limited 

stress-strain relation. 
The effect of the dynamic positioning in the case that the deflection in the middle has to be 

zero for this bar can be seen in figure 6. Figure 7 shows the transients in the outputs of the both 
level-integrators, the interpolator dw(O)/dx and the positioner after starting the dynamic po- 
sitioning. 

Finally in figure 8 some results are given about buckling of a bar (loaded by a compressive 
force N) for the shown linear and nonlinear stress-strain relation and w(0)= w(1)~ O. In the 
nonlinear case the bar is weaker and as a consequence the first eigenvalue is smaller. Solutions 
are shown for N just smaller than the critical compressive force Nc and for N just larger than 
No. From the asymmetry of two of these solutions it can be concluded that the values of N in 
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these cases are too near resonance; the level-control does influence the solutions noticeably. 
From linear interpolation it follows Ncli . . . .  /N  . . . .  ~i,e,r -- 1,23. 

8. Final Remarks 

The described computing method for the bending and buckling of a nonlinear elastic bar can 
be extended to more complicated problems : structure of bars, a vibrating bar, or a nonelastic 
bar. 

A structure of bars can be handled with the described computing method without any 
difficulties. There are several possibilities. One can simulate each bar of the structure in the 
described way, where the boundary conditions for most of the bars are implicitly given, 
dependent on the way in which the bars are interconnected. These implicit boundary con- 
ditions can be dealt with in a similar way as the described dynamic positioning. In most 
structures many bars are lying in a straight line (i.e. horizontal and vertical lines). Then one can 
handle each straight line as one bar having for example implicitly given deflections as well as 
slopes in the nodes on this straight line. In each node the implicit conditions are coupled for all 
straight lines connected to this node. The first mentioned possibility asks more computing 
equipment, the second one more computing time. 

The extension of the problem to vibrating bars asks for storing of (two) previous states of the 
bar if the time is discretized. Having available a hybrid computer the vibration problem in this 
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form can be attacked straightforward by using the digital computer as a storing device. Using 
only analogue means one can consider the bar as a jumped-mass system as to the vibrating 
aspect. Then the bending of the bar can be simulated in the known way and the vibration is 
described by a finite number of second order differential equations to time for these masses. 
These differential equations can be solved by means of integrators provided the chosen time- 
scale is slow enough to allow again the superposition of all the different computing processes. 

In our investigation the presence of elasticity or in other words of a unique relation between 
o- and e has been an essential assumption. The nonelastic case is much more difficult to deal 
with. As soon as the yield point has been reached in some point (x, z) of the bar it is no longer 
possible to determine new values (a, e) without having available the previous values of (a, 0. 
It means that it is necessary to store each solution in order to be able to compute the next 
solution for a slightly changed loading. This problem cannot be solved with merely analogue 
means, but asks for a hybrid computer [4]. 
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